Copied to
clipboard

G = C24.19D14order 448 = 26·7

19th non-split extension by C24 of D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.19D14, (D4×C14)⋊7C4, (C2×D4)⋊7Dic7, C283(C22⋊C4), (C2×Dic7)⋊12D4, (C2×C28).191D4, C14.102(C4×D4), C41(C23.D7), C2.19(D4×Dic7), (C22×D4).7D7, C2.5(C282D4), C2.4(C28⋊D4), C22.121(D4×D7), C14.36(C41D4), (C22×C4).353D14, C14.129(C4⋊D4), C23.10(C2×Dic7), C2.4(C28.17D4), C14.47(C4.4D4), (C23×C14).47C22, C74(C24.3C22), C23.306(C22×D7), C22.62(D42D7), (C22×C14).366C23, (C22×C28).199C22, C22.52(C22×Dic7), (C22×Dic7).197C22, (C2×C4×Dic7)⋊3C2, (D4×C2×C14).5C2, (C2×C4⋊Dic7)⋊35C2, (C2×C28).118(C2×C4), (C2×C14).555(C2×D4), C14.76(C2×C22⋊C4), (C2×C23.D7)⋊10C2, (C2×C4).50(C2×Dic7), C22.92(C2×C7⋊D4), C2.12(C2×C23.D7), (C2×C4).148(C7⋊D4), (C22×C14).73(C2×C4), (C2×C14).162(C4○D4), (C2×C14).197(C22×C4), SmallGroup(448,755)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C24.19D14
C1C7C14C2×C14C22×C14C22×Dic7C2×C4×Dic7 — C24.19D14
C7C2×C14 — C24.19D14
C1C23C22×D4

Generators and relations for C24.19D14
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=d, f2=db=bd, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e13 >

Subgroups: 916 in 258 conjugacy classes, 91 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×Dic7, C2×Dic7, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C24.3C22, C4×Dic7, C4⋊Dic7, C23.D7, C22×Dic7, C22×C28, D4×C14, D4×C14, C23×C14, C2×C4×Dic7, C2×C4⋊Dic7, C2×C23.D7, D4×C2×C14, C24.19D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic7, D14, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C2×Dic7, C7⋊D4, C22×D7, C24.3C22, C23.D7, D4×D7, D42D7, C22×Dic7, C2×C7⋊D4, D4×Dic7, C28.17D4, C282D4, C28⋊D4, C2×C23.D7, C24.19D14

Smallest permutation representation of C24.19D14
On 224 points
Generators in S224
(1 100)(2 87)(3 102)(4 89)(5 104)(6 91)(7 106)(8 93)(9 108)(10 95)(11 110)(12 97)(13 112)(14 99)(15 86)(16 101)(17 88)(18 103)(19 90)(20 105)(21 92)(22 107)(23 94)(24 109)(25 96)(26 111)(27 98)(28 85)(29 167)(30 154)(31 141)(32 156)(33 143)(34 158)(35 145)(36 160)(37 147)(38 162)(39 149)(40 164)(41 151)(42 166)(43 153)(44 168)(45 155)(46 142)(47 157)(48 144)(49 159)(50 146)(51 161)(52 148)(53 163)(54 150)(55 165)(56 152)(57 123)(58 138)(59 125)(60 140)(61 127)(62 114)(63 129)(64 116)(65 131)(66 118)(67 133)(68 120)(69 135)(70 122)(71 137)(72 124)(73 139)(74 126)(75 113)(76 128)(77 115)(78 130)(79 117)(80 132)(81 119)(82 134)(83 121)(84 136)(169 216)(170 203)(171 218)(172 205)(173 220)(174 207)(175 222)(176 209)(177 224)(178 211)(179 198)(180 213)(181 200)(182 215)(183 202)(184 217)(185 204)(186 219)(187 206)(188 221)(189 208)(190 223)(191 210)(192 197)(193 212)(194 199)(195 214)(196 201)
(1 100)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 109)(11 110)(12 111)(13 112)(14 85)(15 86)(16 87)(17 88)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 75)(30 76)(31 77)(32 78)(33 79)(34 80)(35 81)(36 82)(37 83)(38 84)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(113 167)(114 168)(115 141)(116 142)(117 143)(118 144)(119 145)(120 146)(121 147)(122 148)(123 149)(124 150)(125 151)(126 152)(127 153)(128 154)(129 155)(130 156)(131 157)(132 158)(133 159)(134 160)(135 161)(136 162)(137 163)(138 164)(139 165)(140 166)(169 202)(170 203)(171 204)(172 205)(173 206)(174 207)(175 208)(176 209)(177 210)(178 211)(179 212)(180 213)(181 214)(182 215)(183 216)(184 217)(185 218)(186 219)(187 220)(188 221)(189 222)(190 223)(191 224)(192 197)(193 198)(194 199)(195 200)(196 201)
(1 188)(2 189)(3 190)(4 191)(5 192)(6 193)(7 194)(8 195)(9 196)(10 169)(11 170)(12 171)(13 172)(14 173)(15 174)(16 175)(17 176)(18 177)(19 178)(20 179)(21 180)(22 181)(23 182)(24 183)(25 184)(26 185)(27 186)(28 187)(29 113)(30 114)(31 115)(32 116)(33 117)(34 118)(35 119)(36 120)(37 121)(38 122)(39 123)(40 124)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 139)(56 140)(57 149)(58 150)(59 151)(60 152)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 161)(70 162)(71 163)(72 164)(73 165)(74 166)(75 167)(76 168)(77 141)(78 142)(79 143)(80 144)(81 145)(82 146)(83 147)(84 148)(85 206)(86 207)(87 208)(88 209)(89 210)(90 211)(91 212)(92 213)(93 214)(94 215)(95 216)(96 217)(97 218)(98 219)(99 220)(100 221)(101 222)(102 223)(103 224)(104 197)(105 198)(106 199)(107 200)(108 201)(109 202)(110 203)(111 204)(112 205)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 84 86 52)(2 69 87 37)(3 82 88 50)(4 67 89 35)(5 80 90 48)(6 65 91 33)(7 78 92 46)(8 63 93 31)(9 76 94 44)(10 61 95 29)(11 74 96 42)(12 59 97 55)(13 72 98 40)(14 57 99 53)(15 70 100 38)(16 83 101 51)(17 68 102 36)(18 81 103 49)(19 66 104 34)(20 79 105 47)(21 64 106 32)(22 77 107 45)(23 62 108 30)(24 75 109 43)(25 60 110 56)(26 73 111 41)(27 58 112 54)(28 71 85 39)(113 169 153 216)(114 182 154 201)(115 195 155 214)(116 180 156 199)(117 193 157 212)(118 178 158 197)(119 191 159 210)(120 176 160 223)(121 189 161 208)(122 174 162 221)(123 187 163 206)(124 172 164 219)(125 185 165 204)(126 170 166 217)(127 183 167 202)(128 196 168 215)(129 181 141 200)(130 194 142 213)(131 179 143 198)(132 192 144 211)(133 177 145 224)(134 190 146 209)(135 175 147 222)(136 188 148 207)(137 173 149 220)(138 186 150 205)(139 171 151 218)(140 184 152 203)

G:=sub<Sym(224)| (1,100)(2,87)(3,102)(4,89)(5,104)(6,91)(7,106)(8,93)(9,108)(10,95)(11,110)(12,97)(13,112)(14,99)(15,86)(16,101)(17,88)(18,103)(19,90)(20,105)(21,92)(22,107)(23,94)(24,109)(25,96)(26,111)(27,98)(28,85)(29,167)(30,154)(31,141)(32,156)(33,143)(34,158)(35,145)(36,160)(37,147)(38,162)(39,149)(40,164)(41,151)(42,166)(43,153)(44,168)(45,155)(46,142)(47,157)(48,144)(49,159)(50,146)(51,161)(52,148)(53,163)(54,150)(55,165)(56,152)(57,123)(58,138)(59,125)(60,140)(61,127)(62,114)(63,129)(64,116)(65,131)(66,118)(67,133)(68,120)(69,135)(70,122)(71,137)(72,124)(73,139)(74,126)(75,113)(76,128)(77,115)(78,130)(79,117)(80,132)(81,119)(82,134)(83,121)(84,136)(169,216)(170,203)(171,218)(172,205)(173,220)(174,207)(175,222)(176,209)(177,224)(178,211)(179,198)(180,213)(181,200)(182,215)(183,202)(184,217)(185,204)(186,219)(187,206)(188,221)(189,208)(190,223)(191,210)(192,197)(193,212)(194,199)(195,214)(196,201), (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,81)(36,82)(37,83)(38,84)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(113,167)(114,168)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(131,157)(132,158)(133,159)(134,160)(135,161)(136,162)(137,163)(138,164)(139,165)(140,166)(169,202)(170,203)(171,204)(172,205)(173,206)(174,207)(175,208)(176,209)(177,210)(178,211)(179,212)(180,213)(181,214)(182,215)(183,216)(184,217)(185,218)(186,219)(187,220)(188,221)(189,222)(190,223)(191,224)(192,197)(193,198)(194,199)(195,200)(196,201), (1,188)(2,189)(3,190)(4,191)(5,192)(6,193)(7,194)(8,195)(9,196)(10,169)(11,170)(12,171)(13,172)(14,173)(15,174)(16,175)(17,176)(18,177)(19,178)(20,179)(21,180)(22,181)(23,182)(24,183)(25,184)(26,185)(27,186)(28,187)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,141)(78,142)(79,143)(80,144)(81,145)(82,146)(83,147)(84,148)(85,206)(86,207)(87,208)(88,209)(89,210)(90,211)(91,212)(92,213)(93,214)(94,215)(95,216)(96,217)(97,218)(98,219)(99,220)(100,221)(101,222)(102,223)(103,224)(104,197)(105,198)(106,199)(107,200)(108,201)(109,202)(110,203)(111,204)(112,205), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,84,86,52)(2,69,87,37)(3,82,88,50)(4,67,89,35)(5,80,90,48)(6,65,91,33)(7,78,92,46)(8,63,93,31)(9,76,94,44)(10,61,95,29)(11,74,96,42)(12,59,97,55)(13,72,98,40)(14,57,99,53)(15,70,100,38)(16,83,101,51)(17,68,102,36)(18,81,103,49)(19,66,104,34)(20,79,105,47)(21,64,106,32)(22,77,107,45)(23,62,108,30)(24,75,109,43)(25,60,110,56)(26,73,111,41)(27,58,112,54)(28,71,85,39)(113,169,153,216)(114,182,154,201)(115,195,155,214)(116,180,156,199)(117,193,157,212)(118,178,158,197)(119,191,159,210)(120,176,160,223)(121,189,161,208)(122,174,162,221)(123,187,163,206)(124,172,164,219)(125,185,165,204)(126,170,166,217)(127,183,167,202)(128,196,168,215)(129,181,141,200)(130,194,142,213)(131,179,143,198)(132,192,144,211)(133,177,145,224)(134,190,146,209)(135,175,147,222)(136,188,148,207)(137,173,149,220)(138,186,150,205)(139,171,151,218)(140,184,152,203)>;

G:=Group( (1,100)(2,87)(3,102)(4,89)(5,104)(6,91)(7,106)(8,93)(9,108)(10,95)(11,110)(12,97)(13,112)(14,99)(15,86)(16,101)(17,88)(18,103)(19,90)(20,105)(21,92)(22,107)(23,94)(24,109)(25,96)(26,111)(27,98)(28,85)(29,167)(30,154)(31,141)(32,156)(33,143)(34,158)(35,145)(36,160)(37,147)(38,162)(39,149)(40,164)(41,151)(42,166)(43,153)(44,168)(45,155)(46,142)(47,157)(48,144)(49,159)(50,146)(51,161)(52,148)(53,163)(54,150)(55,165)(56,152)(57,123)(58,138)(59,125)(60,140)(61,127)(62,114)(63,129)(64,116)(65,131)(66,118)(67,133)(68,120)(69,135)(70,122)(71,137)(72,124)(73,139)(74,126)(75,113)(76,128)(77,115)(78,130)(79,117)(80,132)(81,119)(82,134)(83,121)(84,136)(169,216)(170,203)(171,218)(172,205)(173,220)(174,207)(175,222)(176,209)(177,224)(178,211)(179,198)(180,213)(181,200)(182,215)(183,202)(184,217)(185,204)(186,219)(187,206)(188,221)(189,208)(190,223)(191,210)(192,197)(193,212)(194,199)(195,214)(196,201), (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,81)(36,82)(37,83)(38,84)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(113,167)(114,168)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(131,157)(132,158)(133,159)(134,160)(135,161)(136,162)(137,163)(138,164)(139,165)(140,166)(169,202)(170,203)(171,204)(172,205)(173,206)(174,207)(175,208)(176,209)(177,210)(178,211)(179,212)(180,213)(181,214)(182,215)(183,216)(184,217)(185,218)(186,219)(187,220)(188,221)(189,222)(190,223)(191,224)(192,197)(193,198)(194,199)(195,200)(196,201), (1,188)(2,189)(3,190)(4,191)(5,192)(6,193)(7,194)(8,195)(9,196)(10,169)(11,170)(12,171)(13,172)(14,173)(15,174)(16,175)(17,176)(18,177)(19,178)(20,179)(21,180)(22,181)(23,182)(24,183)(25,184)(26,185)(27,186)(28,187)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,141)(78,142)(79,143)(80,144)(81,145)(82,146)(83,147)(84,148)(85,206)(86,207)(87,208)(88,209)(89,210)(90,211)(91,212)(92,213)(93,214)(94,215)(95,216)(96,217)(97,218)(98,219)(99,220)(100,221)(101,222)(102,223)(103,224)(104,197)(105,198)(106,199)(107,200)(108,201)(109,202)(110,203)(111,204)(112,205), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,84,86,52)(2,69,87,37)(3,82,88,50)(4,67,89,35)(5,80,90,48)(6,65,91,33)(7,78,92,46)(8,63,93,31)(9,76,94,44)(10,61,95,29)(11,74,96,42)(12,59,97,55)(13,72,98,40)(14,57,99,53)(15,70,100,38)(16,83,101,51)(17,68,102,36)(18,81,103,49)(19,66,104,34)(20,79,105,47)(21,64,106,32)(22,77,107,45)(23,62,108,30)(24,75,109,43)(25,60,110,56)(26,73,111,41)(27,58,112,54)(28,71,85,39)(113,169,153,216)(114,182,154,201)(115,195,155,214)(116,180,156,199)(117,193,157,212)(118,178,158,197)(119,191,159,210)(120,176,160,223)(121,189,161,208)(122,174,162,221)(123,187,163,206)(124,172,164,219)(125,185,165,204)(126,170,166,217)(127,183,167,202)(128,196,168,215)(129,181,141,200)(130,194,142,213)(131,179,143,198)(132,192,144,211)(133,177,145,224)(134,190,146,209)(135,175,147,222)(136,188,148,207)(137,173,149,220)(138,186,150,205)(139,171,151,218)(140,184,152,203) );

G=PermutationGroup([[(1,100),(2,87),(3,102),(4,89),(5,104),(6,91),(7,106),(8,93),(9,108),(10,95),(11,110),(12,97),(13,112),(14,99),(15,86),(16,101),(17,88),(18,103),(19,90),(20,105),(21,92),(22,107),(23,94),(24,109),(25,96),(26,111),(27,98),(28,85),(29,167),(30,154),(31,141),(32,156),(33,143),(34,158),(35,145),(36,160),(37,147),(38,162),(39,149),(40,164),(41,151),(42,166),(43,153),(44,168),(45,155),(46,142),(47,157),(48,144),(49,159),(50,146),(51,161),(52,148),(53,163),(54,150),(55,165),(56,152),(57,123),(58,138),(59,125),(60,140),(61,127),(62,114),(63,129),(64,116),(65,131),(66,118),(67,133),(68,120),(69,135),(70,122),(71,137),(72,124),(73,139),(74,126),(75,113),(76,128),(77,115),(78,130),(79,117),(80,132),(81,119),(82,134),(83,121),(84,136),(169,216),(170,203),(171,218),(172,205),(173,220),(174,207),(175,222),(176,209),(177,224),(178,211),(179,198),(180,213),(181,200),(182,215),(183,202),(184,217),(185,204),(186,219),(187,206),(188,221),(189,208),(190,223),(191,210),(192,197),(193,212),(194,199),(195,214),(196,201)], [(1,100),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,109),(11,110),(12,111),(13,112),(14,85),(15,86),(16,87),(17,88),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,75),(30,76),(31,77),(32,78),(33,79),(34,80),(35,81),(36,82),(37,83),(38,84),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(113,167),(114,168),(115,141),(116,142),(117,143),(118,144),(119,145),(120,146),(121,147),(122,148),(123,149),(124,150),(125,151),(126,152),(127,153),(128,154),(129,155),(130,156),(131,157),(132,158),(133,159),(134,160),(135,161),(136,162),(137,163),(138,164),(139,165),(140,166),(169,202),(170,203),(171,204),(172,205),(173,206),(174,207),(175,208),(176,209),(177,210),(178,211),(179,212),(180,213),(181,214),(182,215),(183,216),(184,217),(185,218),(186,219),(187,220),(188,221),(189,222),(190,223),(191,224),(192,197),(193,198),(194,199),(195,200),(196,201)], [(1,188),(2,189),(3,190),(4,191),(5,192),(6,193),(7,194),(8,195),(9,196),(10,169),(11,170),(12,171),(13,172),(14,173),(15,174),(16,175),(17,176),(18,177),(19,178),(20,179),(21,180),(22,181),(23,182),(24,183),(25,184),(26,185),(27,186),(28,187),(29,113),(30,114),(31,115),(32,116),(33,117),(34,118),(35,119),(36,120),(37,121),(38,122),(39,123),(40,124),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,139),(56,140),(57,149),(58,150),(59,151),(60,152),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,161),(70,162),(71,163),(72,164),(73,165),(74,166),(75,167),(76,168),(77,141),(78,142),(79,143),(80,144),(81,145),(82,146),(83,147),(84,148),(85,206),(86,207),(87,208),(88,209),(89,210),(90,211),(91,212),(92,213),(93,214),(94,215),(95,216),(96,217),(97,218),(98,219),(99,220),(100,221),(101,222),(102,223),(103,224),(104,197),(105,198),(106,199),(107,200),(108,201),(109,202),(110,203),(111,204),(112,205)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,84,86,52),(2,69,87,37),(3,82,88,50),(4,67,89,35),(5,80,90,48),(6,65,91,33),(7,78,92,46),(8,63,93,31),(9,76,94,44),(10,61,95,29),(11,74,96,42),(12,59,97,55),(13,72,98,40),(14,57,99,53),(15,70,100,38),(16,83,101,51),(17,68,102,36),(18,81,103,49),(19,66,104,34),(20,79,105,47),(21,64,106,32),(22,77,107,45),(23,62,108,30),(24,75,109,43),(25,60,110,56),(26,73,111,41),(27,58,112,54),(28,71,85,39),(113,169,153,216),(114,182,154,201),(115,195,155,214),(116,180,156,199),(117,193,157,212),(118,178,158,197),(119,191,159,210),(120,176,160,223),(121,189,161,208),(122,174,162,221),(123,187,163,206),(124,172,164,219),(125,185,165,204),(126,170,166,217),(127,183,167,202),(128,196,168,215),(129,181,141,200),(130,194,142,213),(131,179,143,198),(132,192,144,211),(133,177,145,224),(134,190,146,209),(135,175,147,222),(136,188,148,207),(137,173,149,220),(138,186,150,205),(139,171,151,218),(140,184,152,203)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P7A7B7C14A···14U14V···14AS28A···28L
order12···2222244444···4444477714···1414···1428···28
size11···14444222214···14282828282222···24···44···4

88 irreducible representations

dim1111112222222244
type+++++++++-++-
imageC1C2C2C2C2C4D4D4D7C4○D4D14Dic7D14C7⋊D4D4×D7D42D7
kernelC24.19D14C2×C4×Dic7C2×C4⋊Dic7C2×C23.D7D4×C2×C14D4×C14C2×Dic7C2×C28C22×D4C2×C14C22×C4C2×D4C24C2×C4C22C22
# reps111418443431262466

Matrix representation of C24.19D14 in GL6(𝔽29)

2800000
1010000
0028000
0002800
0000280
000021
,
2800000
0280000
0028000
0002800
0000280
0000028
,
2800000
0280000
001000
000100
0000280
0000028
,
100000
010000
001000
000100
0000280
0000028
,
1600000
20200000
0016000
00252000
000044
0000325
,
26110000
730000
00111800
00191800
000010
000001

G:=sub<GL(6,GF(29))| [28,10,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,2,0,0,0,0,0,1],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[16,20,0,0,0,0,0,20,0,0,0,0,0,0,16,25,0,0,0,0,0,20,0,0,0,0,0,0,4,3,0,0,0,0,4,25],[26,7,0,0,0,0,11,3,0,0,0,0,0,0,11,19,0,0,0,0,18,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C24.19D14 in GAP, Magma, Sage, TeX

C_2^4._{19}D_{14}
% in TeX

G:=Group("C2^4.19D14");
// GroupNames label

G:=SmallGroup(448,755);
// by ID

G=gap.SmallGroup(448,755);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,232,422,387,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=d,f^2=d*b=b*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^13>;
// generators/relations

׿
×
𝔽